A series about creating a model using Python and Tensorflow and then importing the model and making predictions
using Javascript in a Vue.js application, above is the vid and below you will find some useful notes.
-
Here, in part 2 of this series, I will take the model, the data for pre and post processing and finally predict using Vue.js.In the first post, called House price prediction 1/4: Using Keras/Tensorflow and python, I talked about how to create a model in python, pre-process a dataset I've already created, train a model, post-process, predict, and finally about creating different files for sharing some information about the data for use on the second part.Then in part 3 I will show how does one hot encoding works.And finally in part 4 normalizing the inputs and its importance.If you want to see a simpler model and how it integrates with a javascript application using Tensorflow.js and Vue.js you can check my previous post: How to import a Keras model into a Vue.js application using Tensorflow.Js, where I also show how to publish the web site into Github Pages.
- 1.
Pre-reqs
-
Have node.js installedHave the code for the previous post: Python Real Estate - Github
-
- 2.
Loading the data generated in python
-
import neighborhoods from '~/static/shared/neighborhoods.json'
neighborhoods.json ["envigado", "envigado abadia", "envigado aburra sur", "envigado alcal", "envigado alcala", "envigado alquerias de san isidro", "envigado alto de las flores", "envigado alto de misael", "envigado altos de misael", "envigado andalucia", "envigado antillas", "envigado av poblado", "envigado b margaritas", "envigado barrio mesa", "envigado barrio obrero"
import meanX from '~/static/shared/scaler-mean-x.json' import varX from '~/static/shared/scaler-var-x.json'
scaler-mean-x.json [114.6902816399287, 3.4014260249554367, 2.3436720142602496, 0.5928698752228164] scaler-var-x.json [572.865809011588, 0.37646855468812057, 0.2255615608745523, 0.4053680561513214]
import meanY from '~/static/shared/scaler-mean-y.json' import varY from '~/static/shared/scaler-var-y.json'
scaler-mean-y.json [281340671.3761141] scaler-var-y.json [3091863947148531.5]
-
- 3.
The Html and Data Object for getting the inputs for the model
-
<div class="train-controls"> <h2 class="section-header">House/Apartment parameters</h2> <div> <div class="col-sm-12"> <div class="col-sm-6 field-label">Size (mts)</div> <input class="col-sm-6 field field-x" v-model="size" type="number"> <div class="col-sm-6 field-label">Rooms</div> <input class="col-sm-6 field field-x" v-model="rooms" type="number"> <div class="col-sm-6 field-label">Baths</div> <input class="col-sm-6 field field-x" v-model="baths" type="number"> <div class="col-sm-6 field-label">Parking</div> <input class="col-sm-6 field field-x" v-model="parking" type="number"> <div class="col-sm-6 field-label">Neighborhood</div> <select class="col-sm-6 neighborhood field" v-model="neighborhood"> <option disabled value="">Please select one</option> <option v-for="(item, index) in neighborhoods" v-bind:key="index" v-html="item" :value="index"></option> </select> </div> </div> </div> <div class="predict-controls"> <h2 class="section-header">Predicting</h2> <div class="col-sm-6 field-label">Predicted Value</div> <div class="col-sm-6 element field" v-html="predictedValue"></div> <button class="col-sm-12 element button--green" v-on:click="predict" :disabled="!modelReady">Predict</button> </div>
data() { return { modelReady: false, size:180, rooms: 5, baths: 2, parking: 0, neighborhood: 0, predictedValue:'Model not loaded!', selected: '', neighborhoods: neighborhoods } },
-
- 4.
Methods for initializing the model
-
Initialize everything when the vue.js component is mounted
mounted() { this.initializeScaler(); this.initializeOneHotEncoder(); this.loadModel(); },
methods: { ... async loadModel() { this.model = await tf.loadLayersModel('shared/model/model.json'); this.modelReady = true; this.predictedValue = 'Ready for making predictions'; },
-
- 5.
Methods for pre/post processing the data
-
These are the methods needed for pre or post processing the data
initializeOneHotEncoder() { ... }, scale(value, mean, deviation) { ... }, unscale(value, mean, deviation) { ... },
//Prediction preProcessInputs(inputs, neighborhood) { let modelInput = tf.tensor1d(inputs); let neighborhoodTensor = tf.tensor1d(this.dictionary[this.neighborhoods[neighborhood]]); modelInput = this.scale(modelInput, this.meanX, this.deviationX); modelInput = modelInput.concat(neighborhoodTensor) .expandDims(); return modelInput; },
postProcessResults(outputs) { return this.unscale(outputs, this.meanY, this.deviationY); },
-
- 6.
Making predictions
-
... predict() { //Transform Inputs let modelInput = this.preProcessInputs([ parseFloat(this.size), parseFloat(this.rooms), parseFloat(this.baths), parseFloat(this.parking) ], this.neighborhood); //Get prediction const prediction = this.model.predict(modelInput); //Transform Outputs this.predictedValue = Math.ceil(this.postProcessResults(prediction).dataSync()[0]); console.log(this.neighborhoods[this.neighborhood], prediction.dataSync()[0], this.predictedValue); }
-
- 7.
Add the House price prediction web page using tensorflow.js and vue.js into github pages
-
Generate the tensorflow.js app into a subfolder
npm run generate:use-subfolder
-
To make it a bit easier clone your repo into another folder
git clone http://YOUR-REPO.git REPO-NAME-gh-pages
-
Create a branch named gh-pages that is not connected to the master branch
git checkout --orphan gh-pages
-
Delete everything and copy the contents of the dist folder here
-
Finally add all the files and commit and push the changes
git add -A
git commit -m "gh pages branch"
git push origin gh-pages
-
Go into your account
https://YOUR-USERNAME.github.io/YOUR-REPO/
-
- 8.
Resources
Comentarios
Publicar un comentario